3 11, 2021

The Evolution of The Aluminum Alloy

2022-02-03T22:03:03+00:00November 3rd, 2021|

A large, futuristic, triangular aluminum roof supported by three tall pillars cuts into a cloudy sky, while the light of a bright sun peeks out from one of the edges.

The story of human dominance over nature really begins at metalworking with bronze. Bronze represents humanity’s first steps in substantively transforming the essence of the object around them, rather than just manipulating the physical shape of naturally occurring materials.

The sharp head of a stone spear made sometime in the Stone Age.

Since the introduction of bronze more than 10,000 years ago, metallurgy has continued to evolve. Most of the “giant leaps” in metalworking occurred thousands of years ago, but the technological age has brought about unprecedented advances of its own. Many of the advances piggybacked on the slow progression of past eras, as is the case with steel. However, aluminum stands out for its rise as a brand new, never seen before metal that arrived to chart the course for a new era of human progress.

This “metal, that looked like silver, but was too light to be silver” appears in the Roman history books of Pliny the Elder. He tells of how the Roman emperor saw the beauty and versatility of the metal, and, afraid of what its discovery could do to the price of silver, ordered the beheading of the only chemist capable of producing aluminum. The chemist, who claimed only he and the gods knew the secret of making aluminum, took the secret to his grave. From then, the gods were slow in trusting the secret to humans again. In fact, it wasn’t until 1825 that chemist Hans-Christian Orsted produced the first pure aluminum. This Danish scientist got to keep his head and the honor of introducing the world to a game-changing element.

In a period picture depicting the Middle Ages, a metal goblet is passed between two people, only their arms and part of one of their torsos can be seen.

With aluminum in hand, a whole new world opened to engineers and manufacturers. A lightweight, durable, corrosive-resistant, conductive, tasteless, and versatile metal immediately transformed the possibilities for industries, from aerospace and transportation to food and beverage. Soon aluminum, which at first was considered a royal, luxury metal, would find its way into everyone’s home through consumer products such as cars and appliances.

A photograph of the top of a cluster of red, aluminum canned drinks, with condensation droplets forming all over the cans.

Fueled by these past successes, aluminum continues to be a forward-looking material. Innovation characterizes this industry, focused on pushing the boundaries of the youngest member of the great metal family. Today’s research and development in the aluminum industry focuses on testing and understanding aluminum alloys.

To make these alloys, aluminum is melted and then mixed with other elements such as zinc, magnesium, and copper, among many others. Each alloy has a different set of characteristics, and consequently a different set of uses. In order to streamline the transition of these elements from research to application, aluminum alloys are assigned a four-digit number, where the first number indicates the main element that is alloyed with the aluminum. Some alloys, such as the ones found in the 3xxx series (Manganese), are great as cooking utensils, while other alloys, such as the 7xxx (Zinc) series, are perfect for aircraft. This classification of aluminum alloys gives end-users a guide by which they can pinpoint the aluminum alloy to fit their needs.

A photograph of the underbelly of a large commercial airplane where the engines, wings, and fuselage are visible and far above, another plane flies high in the air, leaving behind white contrails.

Specialized aluminum alloys can be found in our power lines, skyscrapers, appliances, automobiles, aircraft, and consumer products, from soda cans to refrigerators. Perhaps the only thing greater than aluminum’s achievements are the promises for tomorrow. From increased electrical conduction, to stronger, more lightweight aluminum, many of the world’s industries count on aluminum alloys to make their own progress possible. In this way, aluminum alloys are a keystone for the world’s continued technological progression.

At Taber Extrusions, our job is to keep up with every twist and turn in the exciting world of aluminum, so that we can deliver the perfect aluminum alloy for the job. Our intricate, precision extrusions  embody our attention to detail and understanding of the nuanced world of aluminum. Taber uses a wide scope of aluminum alloys to deliver quality aluminum extrusions according to customer specifications. That means, every product is tailor made, in substance and in shape.

Many ages have gone by since the first humans began shaping the natural world to their liking. Many, too, have gone by since we began using the power of chemistry to create the perfect materials. At Taber, we take our place within these traditions of progress and innovation, and are proud to work with aluminum, the metal of the future. Come take advantage of our aluminum extrusion expertise and best practices in the sector to meet your needs today!

ABOUT TABER EXTRUSIONS

Founded in 1973, Taber Extrusions originally pioneered a process for extruding rectangular billet which enables the company to extrude solid profiles up to 31 inches wide or hollows up to 29 inches. Taber expanded with the purchase of an extrusion facility in Gulfport, MS in 1995 which houses a new state-of-the-art cast house and two additional presses, micro-extrusion capabilities, and the fabrication area has been expanded multiple times.

Taber continues to extrude billet in a wide range of alloys and sizes and has diversified its markets beyond military since its inception to include aerospace, automotive, marine, infrastructure, and sporting goods, among many others. For these markets, the company supplies cast and extruded products in a variety of soft and hard alloys.

Today, Taber Extrusions is a vertically-integrated supplier of friction stir welding panels and assemblies in North America not previously seen – offering extruded aluminum components, value-added machining services, and raw materials.

Follow Taber Extrusions 

LINKEDIN: https://www.linkedin.com/company/8843183/

FACEBOOK: https://www.facebook.com/taberextrusions/

TWITTER: https://twitter.com/taberextrusions

Are you interested in joining the Taber Team? Send your resume to: careers@taberextrusions.com

Become a customer today! Visit us or request a quote: https://taberextrusions.com/contact-us/ or call us at (888) 985-5319.

10 01, 2019

Environmental Advantages of Aluminum Extrusions

2019-01-10T19:19:41+00:00January 10th, 2019|

Beautiful country side with grassy mountain vistas and artistically-styled green cityscape & airplane

Aluminum. It’s light. It’s strong. It’s highly recyclable. And it’s leading the charge in our planet-wide quest for a more renewable, sustainable future… and aluminum extrusions are definetly part of the conservation puzzle..

Strides in aluminum alloy technology have allowed aluminum products to lower energy and carbon emissions in countless applications. From the automotive and aerospace industry, to construction and marine, consumer products, and beyond, aluminum is no doubt the sustainable solution for the modern world.

The facts don’t lie. The energy required to create new aluminum has decreased by 26% in the last two and a half decades, and the entire industry’s global warming potential has decreased by 37% (source: aluminum.org). This is due in large part to robust aluminum recycling programs that manufacturers have adopted.

Let’s dig deeper into the different facets of aluminum that is making it the material of the future.

LIGHTWEIGHT DESIGN

Implementing lightweight aluminum into manufacturing designs presents a great opportunity to increase the sustainable use of energy. Aluminum’s light weight contributes to increased fuel efficiency in transport vehicles, from consumer automobiles to military vehicles and airplanes. Aluminum’s 95% reflectivity property can be used in building materials to reduce heating costs within green buildings, and improves the efficiency of solar panels and solar cells.

We will go over the sustainability aluminum provides due to recycling further below, but it is important to note that the greatest environmental benefit comes from the day to day use of vehicles and buildings that are built with aluminum.

For buildings, the use of aluminum in extrusion-based building components (such as windows, sunshades, facades, etc.) can massively decrease the operating costs and energy usage over the lifetime of a building.

Aluminum extrusions’ combination of low weight and high strength provides immense benefits to pretty much anything with a motor and wheels. In using this material, you are reducing the mass that must be moved by the transportation system. Mass reductions in this way can lead to further downsizing elsewhere in the design, which results in reduced carbon emissions and energy consumption.

Each pound of aluminum used in place of high-strength steel provides the following benefits:

  • saves the equivalent of 3.1 gallons of crude oil over the life of the vehicle (source: org)
  • saves CO2 from day one, using recycled aluminum (source: org)

RECYCLING

The sustainability benefits that come from recycling aluminum are unmatched. As with any recyclable material, recycling aluminum conserves energy and our natural resources, as well as reduces water and air pollution.

Aluminum is INFINITELY recyclable. That means that it can be recycled over and over with virtually no limit.

Since 1884, billions of metric tons of aluminum have been produced, and today, roughly 74% of that amount is still in use today.

Yes, aluminum is truly unparalleled when it comes to recycling.. In fact, all aspects of products made from aluminum can be reused. That means that a simple act like tossing your aluminum cans into the recycling bin, instead of the general trash, can conserve 95% of the energy that it takes to create a new aluminum can.

For every 1 ton of aluminum recycled, the planet is spared 9 tons of CO2 emissions.

Members of the Aluminum Extrusion Council are deeply involved in scrap collection and secondary smelting programs. (source: AEC.org).

CONCLUSION

Although modern technology is making the world much smaller, it’s also introducing a lot of design challenges as we work towards creating a better, more sustainable future. Taber Extrusions is proud to be a prominent member of the aluminum extrusion industry, as it gives us the opportunity to assist manufacturers in reducing their carbon footprint in their designs, and work towards a better tomorrow.

Follow Taber on social media and never miss an update:

LINKEDIN: https://www.linkedin.com/company/8843183/

FACEBOOK: https://www.facebook.com/taberextrusions/

TWITTER: https://twitter.com/taberextrusions

Interested in becoming a part of the Taber Team?  Submit your resume to careers@taberextrusions.com.

 

13 06, 2017

The Lightweight Revolution and Lightweight Aluminum

2017-07-26T17:47:10+00:00June 13th, 2017|

“Sometimes in life, you will find that you must let things go simply because they are heavy.” Of course, we are talking about the metal, steel, and aluminum market. We’re editors for an aluminum extrusion company, after all – so our primary interest is focusing on lightweight aluminum and where lightweight aluminum alloys stand in regard to the lightweight revolution that has infiltrated virtually every industry involving buildings, infrastructure systems, technology and transportation over recent years.

Everything is becoming lighter. Planes, trains, automobiles, and even Apples. (We know which Apples.) The reason for “lightweighting” is obvious: lower costs, smaller carbon footprint, stronger, more robust and corrosion-resistant products, and the big one… better fuel economy.  So how does lightweight aluminum fit into the picture? What are the “aluminum alloys to be reckoned with?” Are we going to find these super strong lightweight aluminum alloys in everyday items like bridges or automobiles?

Nope. Unless you’re an astronaut. Aerospace is where you’ll find 2XXX and 7XXX alloys. Military applications are a distant second. And not even a speck in the rearview mirror? Auto.

For more interesting tidbits like this, lightweight aluminum extrusion news, and Taber culture, visit the blog section of our website – or if you are interested in contacting us directly please e-mail info@taberextrusions.com or call us at 888-985-4913.

2XXX and 7XXX are the name of the game when it comes to “strong and light.” 2XXX alloys are aluminum-copper. Adding lithium to the mix creates an even higher strength alloy – AA2195 is one example. You’ll find these in Boeing airplanes and SpaceX rockets… but not in automobiles… lithium is expensive. Which is why 7000 series alloys are being considered for the automotive sector, but may not be as lightweight as the lithium-containing 2000 series alloys. (A glimpse of perspective: The only mass-produced aluminum is beverage cans, and that is 3XXX for the body and 5XXX for the top/lid.) The challenge to be met regarding 7XXX for automotive use is formability. 7XXX series alloys really like to remain flat, and testing techniques such as high temperature forming are expensive and slow. A rough comparison: 1 day of auto production = 1 year of airplane production.

Currently the strongest lightweight aluminum alloys are going to be found in low volume applications only. “Warm forming” of 2XXX and 7XXX can be found in aerospace and not automotive because the slower manufacturing process combined with the extra expense of alloying and energy (heating the metal and/or the tooling) are relatively low in aircraft manufacturing.   This process has a significantly higher percentage of total costs when it comes to manufacturing an automobile.  So, friends, it’s going to be a while until we see 7XXX in cars, and due to its expense, 2XXX will likely remain an aluminum alloy that stays in the sky.

Aluminum alloyed with anything after it on the periodic table will be heavier than pure aluminum. Aluminum alloyed with anything before it will be lighter. The further before, the greater lightweighting. Which is why Al-Li (lithium) are the lightest aluminum alloys.

A very special thank you to Daniel J. Schaeffler, Ph.D., President and CEO of Engineering Quality Solutions, for lending your thoughts, opinions, and pun ideas to our blogs.

Go to Top