29 12, 2023

Friction Stir Welding Services Spotlight: End Applications

2023-12-29T22:02:52+00:00December 29th, 2023|

A double-sided friction stir welding machine simultaneously welds two sides of the metal. Under that is the blog title: “Friction Stir Welding Services Spotlight: End Applications” and the Taber logo.

 

Friction stir welding is a solid-state process where a non-consumable tool generates heat through friction, softening the workpiece near the tool. The softened metal is mixed and forged under mechanical pressure, creating a steel-strong bond. It’s akin to a sculptor shaping and uniting metal like clay or dough.

FSW was invented in 1991 by The Welding Institute (TWI) in the United Kingdom, and it has since become one of the most versatile and widely used welding processes in the world. This blog delves into the realm of FSW, covering the process, its advantages over traditional methods, and its applications across industries.

Unlocking the Hidden Benefits of FSW — Your Ultimate Guide!

 

An infographic about the advantages of FSW and which industries benefit most from friction stir welding.

 

FSW has revolutionized the welding process and changed the way we join metals. It is a versatile and efficient process that offers several advantages over traditional welding processes.

  • High weld quality: FSW is a solid-state welding process that produces robust, flexible, tough welds without melting the metal and eliminating defects.
  • Low distortion: This localized welding technique minimizes distortion in welded components by concentrating heat near the weld area.
  • Wide range of materials: FSW can weld various materials like aluminum, magnesium, copper, and steel alloys

In addition to these advantages, FSW is a reliable and repeatable welding process. This makes it ideal for high-volume production applications.

 

A vector compilation of trains, buses, helicopters, subways, and airplanes in blue tones.

FSW Services Have Revolutionized Joining Metals (particularly in U.S. aluminum extrusions)

The industries that use the most FSW are:

Aerospace

Due to the need for aircraft fuselages to act as engine components, the aerospace sector has embraced FSW services for their lightweight, high-strength characteristics and their ability to maintain optimum structural integrity after being welded.

Automotive and rail

FSW finds its application in producing aluminum-intensive cars, where robust and reliable joints are paramount. By utilizing FSW technology, automotive manufacturers can reduce weight while maintaining structural integrity, improving performance and safety.

Marine

The marine industry widely employs FSW for welding aluminum structures that need high strength and corrosion resistance. It produces high-quality welds and is more environmentally friendly than other welding processes. Its use in the maritime industry has led to significant cost savings, improved efficiency, and better-quality welds.

Electronics

The electronics industry uses FSW to produce heat sinks and join dissimilar metals, such as copper and aluminum. It offers improved thermal performance, reduced weight, and reliable and repeatable welds, making it an attractive option for electronic device manufacturers.

General fabrication

FSW provides a solid-state welding process that results in high-quality, defect-free welds. It is also ideal for welding various materials, such as aluminum, magnesium, copper, and steel alloys, and has less distortion and fumes than traditional welding processes.

Various other sectors, such as energy, construction, and medical devices, also utilize FSW in addition to these industries. The FSW process is a great partner for demanding applications because it creates seamless and defect-free welds in large aluminum extrusions.

Taber Extrusions Expands Capabilities with Friction Stir Welding

 

Watch the “Taber: Advanced Friction Stir Welding Capabilities” video here: https://www.youtube.com/watch?v=Xw5sxgHSn7I

 

 

If your company is in need of friction stir-welding services, consider the leading American aluminum extrusion company—Taber Extrusions.

Taber’s FSW capabilities allow them to create panel assemblies that are very large (up to 200 inches wide by 65 feet long). They can also make double-walled hollow extrusions up to 6.5 inches tall, 32 inches wide, and 65 feet long. The FSW production cell carries out all of this through a unique production process, which also trims the profiles of the panels before joining them.

Taber’s in-house FSW capabilities provide its customers with a more comprehensive suite of services, meeting the ever-increasing demand for FSW across various industries.

More About Taber Extrusions: 

Founded in 1973, Taber Extrusions originally pioneered a process for extruding rectangular billet which enables the company to extrude solid profiles up to 31 inches wide or hollows up to 29 inches. Taber expanded with a facility in Gulfport, MS., in 1995, which houses a state-of-the-art cast house and two additional presses, micro-extrusion capabilities, and the fabrication area has been expanded multiple times – with the most recent being the addition of the new larger machining center.

Taber continues to extrude billet in a wide range of alloys and sizes, and has diversified its markets beyond military since its inception to include aerospace, automotive, marine, infrastructure, and sporting goods, among many others. For these markets, the company supplies cast and extruded products in a variety of soft and hard alloys.

Today, Taber Extrusions is proud of its friction stir welding capabilities, and full offering of extruded aluminum components, value-added machining services and raw material supply to the North American market.

Taber Extrusions is here to make your dreams a reality. Taber’s team of experts will guide you through the entire process, from selecting the perfect custom shape to choosing the suitable alloy. And their award-winning extrusion process will bring your project to life.

Follow Taber Extrusions:

LINKEDIN: https://www.linkedin.com/company/taberextrusions/

FACEBOOK: https://www.facebook.com/taberextrusions/

TWITTER: https://twitter.com/taberextrusions

 

Are you interested in becoming a part of the Taber team? Submit your resume to careers@taberextrusions.com.

29 07, 2021

Taber Extrusions’ New Haas VF-12 CNC Machine is Ready to Serve You

2022-03-07T19:21:02+00:00July 29th, 2021|

A digital image of a VF-12 CNC machine made by Haas, which is a long rectangular box with four large connected viewing panels to allow operators to see the interior where a vertical column holds a spindle which is used to create aluminum extrusions.

Taber Extrusions continues to invest in technologies that provide the broadest capabilities in the extrusion industry.  If the job can be done, it can be done at Taber.

With this line of thought, Taber has added a new CNC Haas VF-12 vertical machining center to its operation. This VF series CNC machine allows our top engineers to design final extrusion shapes on specialized software, and then have them made inside of this “self-contained factory,” all in one precise and effective process.

HAAS CNC machines are the cutting-edge of manufacturing prowess and contain several lifetime’s worth of know-how in material engineering, programming, software, and manufacturing. When a company in-bounds a Haas VF-12, it’s a guarantee that the company has hired and developed top talent who will operate these complex CNC machines, and without whom the full potential of the VF-40 could never be extracted.

On the VF-12/40, the tools have travel lengths of 150 inches of an X-axis, 32 inches of Y, and 30 inches of Z. This means that long aluminum extrusions can be precisely made within the machine, cutting down on processing times and costs. With the internal, automatic tool change capacity (30+1), the VF-12 fits the bill for Taber’s focus on precision and effectiveness so customers can rest assured that if they can imagine it, we can form it for the best price.

The 150 x 28-inch table can be loaded with up to 4000 pounds of base material that will be worked on by a high-power, direct-drive spindle equipped with programmable lubrication and coolant hoses. Everything from tool selection, to RPM, to feed rate and coolant flow can be altered to work on different alloys and acquire perfect aluminum extrusions.

A close-up of the spindle and nozzles for lubrication and coolant of a CNC machine in full operation working on a metal “brick.”

With in-house casting solutions, ultra-precision extrusion manufacturing, friction stir welding capacities, and a full range of hard and soft aluminum alloys, Taber continues to align itself as an industry leader in having the broadest available capabilities. The VF-12 propels Taber into the future with increased capabilities and the spirit of continued improvement in the service of customers in the automotive, defense, transportation, and marine industries, and beyond.

 

About Taber Extrusions

Taber is a minority-owned business enterprise which is AS 9100, NADCAP, and ABS certified. Founded in 1973, Taber Extrusions originally pioneered a process for extruding rectangular billet which enables the company to extrude solid profiles up to 31 inches wide or hollows up to 29 inches. Taber expanded with the purchase of an extrusion facility in Gulfport, MS, in 1995 which houses a cast house and two additional presses, and multiple expansions of value-added fabrication services. Taber continues to extrude billet in a wide range of alloys and sizes, including 7” billet molds, and has diversified its markets beyond military since its inception to include aerospace, automotive, marine, infrastructure, and sporting goods, among many others. For these markets, the company supplies extruded products in a variety of soft and hard alloys. In 2018, Taber added ultra-precision extrusions to their capabilities allowing them to further serve customers in electronics, computer, and medical industries. Recently, Taber was proud to announce yet another exciting launch into friction stir welding.

11 01, 2021

Industries That Use Friction Stir Welding

2021-02-11T20:06:29+00:00January 11th, 2021|

4 photographs: upper left – a high-speed white rail train with a red stripe zooming through a bright train station in a dynamic blur. Upper right – Fincantieri Marinette Marine Littoral Combat Ship plowing through a deep, dark ocean. Lower right – the view from a car roof as it speeds down the expressway towards a beautiful orange sunset. Lower left – A jet airplane high in the air creating stark white contrails against a clear turquoise sky.

Amid the screech of saws cutting through metal, the beeping of forklifts, and the clank of metal components, workers in modern shipyards are producing some of the largest vessels in the world. A similar cacophony of sounds as those heard in a shipyard can be heard around the country in automotive, construction, aerospace, and transportation factories.

Neatly organized assembly line workers with electric drills work on large metallic parts, bigger than the men working on them and resemble pvc pipe connectors with structures inside them. Behind them can be seen boxes with materials and in front of them are large metallic shelves for storage.

Yet, one traditional sound associated with industrial manufacturing may soon go silent: the loud cracking, buzzing, electric sound associated with MIG welding. Sometimes likened to the sound bacon makes while frying, the sounds of MIG welding may eventually come to be completely replaced by the low buzzing of the spinning rotating tool used in Friction Stir Welding (FSW).

As FSW becomes faster and more versatile, more industries than ever are moving toward this type of welding.

The Benefits:

FSW shows its high cast as a modern-form joining operation.

A computer operator wearing blue, noise-canceling headphones with a small microphone attachment, sits working in front of 6 computer monitor stacked three on top of three. Behind the monitor is a large structure, which nose-cone to the Orion spaceship, it appears to be a green cylinder surrounded by white pipes and tubes.

Unlike other forms of welding, FSW can be automated which increases precision and reduces manufacturing times. Manufacturing time is further decreased because FSW only takes one pass to weld metals and because there is no filler material nor melting, eliminating the need for post weld work, such as splatter cleaning.

FSW is also hyper-modern by being more environmentally friendly and less wasteful (it does not have consumable parts) and not producing nauseous gases during the process.

Other benefits of Friction Stir Welding include:

  • Increased strength (High tensile, fatigue & bend properties) ​
  • Improved sealing, completely void-free leak proof joints​
  • Reduced thermal distortion and shrinkage​
  • Improved repeatability​
  • The ability to join two different alloys​
  • Good for welding metals such as aluminum alloys that can be hard to weld
  • Cost effectivity

The top users: Marine and Transportation

Both of these gigantic industries – marine and transportation – incorporate FSW into their manufacturing operations. Public transportation alone has a market size of 75.6 billion dollars[i], and for shipbuilding, without considering the other sectors of the naval industry, the market size is 29 billion.

Other key sectors are also keen on taking advantage of FSW. Below we highlight just one benefit FSW gives each of the following sectors:

Air Transport:

The Benefit: Weight Reduction

The long underbelly of an airplane, which has two undulations for engines, and the landing gear down against a completely white backdrop giving the image a classic black & white feel.

One of the simplest ways to increase efficiency in transport vehicles is by reducing weight. Marine, air, and land transport vehicles are foregoing rivets, clinch nuts, or traditional MIG or TIG welding in their manufacturing processes in favor of FSW which doesn’t add any weight to the structure.

“Weight is one of the biggest challenges to aircraft manufacturers. Using FSW to join aluminum alloy stringers to skins for aircraft wings and fuselage structures will reduce weight by the removal of thousands of rivets, and any overlapping aluminum material. A leading aircraft manufacturer estimated that potential weight savings of approximately 2.2 lbs. per meter of FSW could be made.[i]

Aerospace:

The benefit: Easy welding of hard-to-weld alloys.

Space X’s Falcon 9 Flight 17's first stage attempting a controlled landing on the Autonomous Spaceport Drone Ship (ASDS) against an early evening sky as the fiery hot gasses are expelled toward the landing pad, creating a misty exhaust.

Some types of difficult-to-weld aluminums can frustrate traditional welding attempts. In addition, joining dissimilar aluminum alloys has always been a challenge due to the different chemical and physical properties of the metal.

Recently, aerospace companies have begun using FSW, a solid-state welding technique, to surpass these limitations. Today, some fuel tanks for spacecraft – made out of hard to weld aluminum alloys – are premanufactured using FSW[i].

Marine Ships:

The benefit: Better production habits, taking advantage of prefabrication, modular building, and assembly lines.

A scene with a backdrop of green hills covered with small shrubs and trees. On a waterway, a large white cruise ship with one smoke stack creates white foam as its hull breaks through the water.

As if a precursor of things to come, the first commercial use of FSW was on ships, specifically on hollow panels used for freezing fish on fishing boats.

Today, many ships use friction stir welded floors, decks, and bulkheads. By using FSW, shipyards reduce the amount of work needed to be done, shifting the work to assembly-line factories[i]. Many parts can be manufactured in production lines improving safety, accuracy, and efficiency. Not only that, the industry can take advantage of the best pre-fab and modular practices that will further decrease production times.

Today’s cruise ships are light weight structures which allow shipbuilders to build taller ships while keeping the center of gravity lower. Designed with all the heavy machinery at the bottom and lightweight aluminum materials at the top makes them inherently stable even as ship designs are getting taller and taller, demonstrating how sufficient safety can be achieved.

Ultimately this translates to one thing: bigger ships mean MORE FUN!

Whether it’s the freighters that carry the goods from our globalized economy, the military vessels that keep our oceans safe, or the cruise-lines that give families unforgettable vacations, all these sectors are seeing cost and efficiency saving with FSW.

Trains:

The benefit: Safety

a long, white high speed train with orange trim at the bottom. The train disappears into the distance as it rests at an empty platform with tile floors and a metal roof with a long row of lights and a skylight running down the middle on the roof.

This industry in particular has honed in on the advantages FSW offers in crash safety. FSW is the best welding process for creating safe designs:

“Modern passenger rail cars are increasingly produced from longitudinal aluminium extrusions with integrated stiffeners.

This design approach can enhance the crashworthiness of vehicles […] Large aluminum extrusions with complicated shapes are [being used].[i]

Freight Trailers:

The benefit: Stability

Underneath a fiery red sky, a blue lorry and trailer travel along a paved highway road followed by a car while on the other side of the double yellow line, two empty lanes extend off into the distance.

Anyone traveling behind an 18-wheeler on highways knows just how the wind and road shakes the trailers. By using FSW on the floorboard of their trailers, some freight companies argue that their trailers have become more stable than ever. “The aluminum extrusions become one at the molecular level, making the floor a single-piece of rigid aluminum.[i]” The end result? Less wear on the tires and better fuel mileage.

Other industries:

Other industries taking advantage of friction stir welding include the automotive, construction, and defense industries, among others. It has even been incorporated to make stronger snowmobiles and lighter coolant systems.

The strong, lightweight welds that can be used on hard-to-weld alloys have every industry that uses aluminum and aluminum extrusions looking to gain a competitive advantage.

Companies that have specialized in aluminum and aluminum extrusions are the front line for delivering FSW benefits to customers. For more information, please visit Taber Extrusions. With a long tradition of proving aluminum and aluminum extrusion solutions, Taber Extrusions provides companies all the advantages of FSW in one location.

Industries Served by Taber Extrusions:

 

  • Distributors
  • Government | Military Contracts | Department of Defense
  • Aircraft | Aerospace
  • Marine | Shipbuilding
  • Infrastructure | Platforms | Decking
  • Electrical | Power Transmission | Electronics
  • Transportation
  • Sporting Goods
  • Industrial, Agricultural, and Mining Equipment
  • Structural Components
  • Specialty Architectural

About Taber Extrusions: 

Founded in 1973, Taber Extrusions originally pioneered a process for extruding rectangular billet which enables the company to extrude solid profiles up to 31 inches wide or hollows up to 29 inches. Taber expanded with the purchase of an extrusion facility in Gulfport, MS., in 1995 which houses a new state of the art cast house and two additional presses, micro-extrusion capabilities, and the fabrication area has been expanded multiple times.

Taber continues to extrude billet in a wide range of alloys and sizes, and has diversified its markets beyond military since its inception to include aerospace, automotive, marine, infrastructure, and sporting goods, among many others. For these markets, the company supplies cast and extruded products in a variety of soft and hard alloys.

Today, Taber Extrusions has completed the addition of in-house Friction Stir Welding capabilities, and carries on their offering of extruded aluminum components, value-added machining services and raw material supply to the North American market – making them a vertically integrated supplier of FSW panels and assemblies never before seen in North America.

Follow Taber Extrusions

LINKEDIN: https://www.linkedin.com/company/8843183/

FACEBOOK: https://www.facebook.com/taberextrusions/

TWITTER: https://twitter.com/taberextrusions

Interested in becoming a part of the Taber Team?  Submit your resume to careers@taberextrusions.com.

Become a customer today! Visit us or request a quote: https://taberextrusions.com or call us at (888) 985-5319.

 

______

 

i https://www.ibisworld.com/industry-statistics/market-size/public-transportation-united-states

ii https://www.twi-global.com/who-we-are/who-we-work-with/industry-sectors/aerospace/joining-of-airframe-structures/friction-stir-welding-of-airframe-structures

iii https://www.twi-global.com/technical-knowledge/published-papers/industrialisation-of-friction-stir-welding-for-aerospace-structures-december-2001

iv https://www.twi-global.com/who-we-are/who-we-work-with/industry-sectors/aerospace/joining-of-airframe-structures/friction-stir-welding-of-airframe-structures

v https://www.twi-global.com/technical-knowledge/published-papers/creating-a-stir-in-the-rail-industry-november-2001

vi https://www.ttnews.com/articles/fontaine-brings-friction-stir-welding-revolution-trailer

 

###

17 02, 2020

Taber: Advanced Friction Stir Welding Capabilities

2020-02-17T19:42:22+00:00February 17th, 2020|

Something big is happening at Taber: Friction Stir Welding has been added to their already extensive portfolio of capabilities. #TheShapeOfEndlessPossibilitiies #Taber #Aluminum Extrusions #FSW

17 07, 2018

Infrastructure Applications of 6xxx Series Aluminum Alloys

2018-07-18T16:49:28+00:00July 17th, 2018|

It is estimated that 56,000+ bridges are structurally deficient in America with an estimated $123 billion in rehab needed. The solution? The 6xxx Series Aluminum Alloys. Not only can they be used for emergency repairs but they can provide a long-term solution to this infrastructure problem with minimal maintenance required.Let us review what sets this alloy apart, its advantages, and the types of projects the alloy is best suited for.

What is an aluminum alloy?  

Aluminum alloys are created by taking aluminum and adding elements, creating chemical compositions with enhanced properties. Once created, these compositions receive a 4-digit number with the first digit signifying a general series that characterizes its main alloying elements.

What does it mean when an alloy is a part of the 6xxx series

The main agents in the 6xxx series are silicon and magnesium in order to form magnesium silicide within the alloy. Alloy 6061 is the most commonly used of the series, typically used in truck and marine frames.

What are the advantages of the 6xxx aluminum alloys?

  • High Corrosion Resistance – 6xxx series aluminums can withstand abrasion, keeping their strength and durability in a variety of environments. This is one of the appeals to using it in infrastructure and architectural projects that hope to create structures with the intent of lasting decades. Whether its receiving harsh sunlight in the Nevada desert or nearly year round rain in Seattle, the alloy is able to hold up.
  • Extrudablitity – A unique feature of the 6xxx series is its extrudability. The ability to make specific, extruded parts from the alloy is another factor in why architectural and infrastructure members use this alloy. They typically require unusual, high-strength components and the power of extruded of 6xxx series is its ‘place-metal-where-you-need-it’ flexibility.
  • Heat treatable, weldable, flexible – 6061 is a highly weldable alloy, using tungsten insert gas welding or metal inert gas welding. After welding, the properties near the weld are those of 6061-O (a loss of strength of around 80%). However, MIG and TIG welded material can be heat treated again to bring the material back to the pre-welding temper. Another option may be Friction Stir Welding (FSW). With FSW, the profiles are joined together through the use of a specialized rotary machine tool. Although the material is heated and joined together through friction, the overall heat applied to the material is much lower and of shorter duration than MIG or TIG welding and the heat affected zone is much less and retains most of the original strength.

What are the applications of the 6xxx Series Aluminum Alloys?

It is this combination of advantages that make 6xxx Series Aluminum Alloys prime candidates for architectural and infrastructure projects. Such projects include:

  • Bridges or aluminum bridge decking: Extruded aluminums can be used to build traditional bridges or bridge decks can be pre-built in a modular fashion and moved to bridge sites. This method can limit the amount of time that bridges are under construction and save money in the long run.
  • Roof Structures: Typically implemented for arenas and gymnasiums, the 6063 or 6061 extruded tubes are used in large scale roofs with 5xxx alloy sheets covering them.
  • Pipelines: Because of their high corrosion resistance the 6xxx series is great for pipeline systems that have possibly acidic or dangerous materials flowing through them.
  • Automotive: Whether for a car, motorcycle, bus, or train, the 6xxx series is often used in the automotive industry for its high dent resistance and durability.

Taber Extrusions recognizes the hard work and precise engineering required for large-scale infrastructure projects. Capable of producing very large aluminum shapes with our exclusive 10” x 28” rectangular container along with our 16” and 20” round containers, we canconsistentlysupply our customers with some of the widest, most complex multi-void hollows in the industry. Taber produces their 6xxx series alloys in-house, and our recent investments in our casting and fabrication capabilities have poised Taber to be a great fit for any of your architectural and infrastructure needs… and a reliable partner for all aspects of your project.

Recent upgrades to our aluminum cast house and aluminum fabrication capabilities have put Taber in the perfect position to do just that. Check out our video on Aluminum Extrusions for Infrastructure Projects.

To learn more about how we can be of service visit: https://taberextrusions.com/

For inquires or quotes visit: https://taberextrusions.com/contact-us/

Follow Taber Extrusions

LINKEDIN: https://www.linkedin.com/company/8843183/

FACEBOOK: https://www.facebook.com/taberextrusions/

TWITTER: https://twitter.com/taberextrusions

Interested in becoming a part of the Taber Team?  Submit your resume to careers@taberextrusions.com.

21 11, 2012

Car Industry Advances Motivate Aluminum Manufacturing Expansion Into China

2015-06-18T15:33:37+00:00November 21st, 2012|

In the past week, the auto industry has made significant strides to increase its usage of aluminum in manufacturing. Perhaps this shouldn’t be a surprise, as this was a theme of Aluminum Week 2012 and Tesla’s aluminum-body Model S won Car Of The Year from both Motor Trend and Automobile Magazine. However, it’s a good sign at the aluminum industry’s growing importance for car manufacturing.

One key indicator of this comes from global aluminum company Novelis. Novelis just announced expansion plans for an aluminum auto sheet plant in China. Novelis is recognized as a leader in rolled aluminum and its products are used in everything from beverage cans (that Coke you’re drinking? Novelis produced the can) to smartphone components to car components. From PR Newswire via Herald Online:

Novelis, the world leader in aluminum rolling and recycling, officially broke ground today on the company’s first aluminum manufacturing plant in China. The $100 million investment is designed to meet the rapidly growing demand for rolled aluminum used in the design of a new generation of lighter, more fuel-efficient vehicles.

The wholly owned plant under construction in Changzhou in the Jiangsu Province, will have a capacity of 120,000 metric tons per year, further strengthening Novelis’ position as the world’s largest producer of aluminum sheet products used to create vehicle structures and body panels. Startup of the new facility, the industry’s first automotive sheet plant in China, is planned for late 2014.

With the aluminum industry still glowing from Tesla’s award-winning Model S, it’s likely that you’ll see further direct investment in aluminum-based auto manufacturing in the future.

Onward and upward!

11 10, 2012

Improving The Auto Industry’s Aluminum Manufacturing Process

2017-01-26T23:37:31+00:00October 11th, 2012|

The auto industry’s been one of the biggest topics of this blog over the past few months, but we haven’t gone too much into the specifics — it’s just known that the auto industry has seen aluminum as part of its path to lighter, more fuel-efficient vehicles.

GM, however, offered more details about how it’s enabling greater use of aluminum in its manufacturing process. In particular, it has to do with the way the material is welded, as traditionally aluminum is difficult to weld. From GM’s press release:

“GM’s new resistance spot welding process uses a patented multi-ring domed electrode that does what smooth electrodes are unreliable at doing – welding aluminum to aluminum. By using this process GM expects to eliminate nearly two pounds of rivets from aluminum body parts such as hoods, liftgates and doors.

Spot welding uses two opposing electrode pincers to compress and fuse pieces of metal together, using an electrical current to create intense heat to form a weld. The process is inexpensive, fast and reliable, but until now, not robust for use on aluminum in today’s manufacturing environment. GM’s new welding technique works on sheet, extruded and cast aluminum because GM’s proprietary multi-ring domed electrode head disrupts the oxide on aluminum’s surface to enable a stronger weld.”

This process has already been used on the hood of the Cadillac CTS-V and the liftgate of the Chevy Tahoe and GMC Yukon (hybrid editions). We’ll see more of this in 2013, thus promoting greater fuel efficiency and moving towards a better experience from manufacturers to motorists.

28 02, 2012

Ferrari 620 GT: Lots of Aluminum

2017-01-26T23:37:31+00:00February 28th, 2012|

Ferrari has launched the second teaser video of the 620, their 599 replacement.

In the video, there are quite a few processes between hot, molten aluminum alloy being poured into forms and an actual finished car: stamping, lamination, extrusion, etc.

Ferrari 620 GT

It is clear that Ferrari used a lot of the stuff to save weight wherever they could.

According to autoevolution’s original article, “Aluminum was used as an alternative to carbon fiber because Ferrari wanted to keep the cost of their new GT down. Besides that, carbon fiber is difficult to fix in case of an accident.”

24 01, 2012

Hybrid Cars: A lesson in construction efficiency

2017-01-26T23:37:31+00:00January 24th, 2012|

According to a recent article, in Metal Center News, consumers are shifting to hybrid cars because they are more fuel-efficient, and because the use of aluminum in their construction makes the cars lighter.

The article projects growth through 2025 given consumer preference and the upcoming federal CAFE regulations that will vastly increase the miles-per-gallon requirements and CO2 emissions restrictions of all North American light vehicles.

Click here to read the original article and learn more about the use of aluminum for hybrid cars.

Go to Top